

Framework for wetland vulnerability assessments: Delaware Bay case study

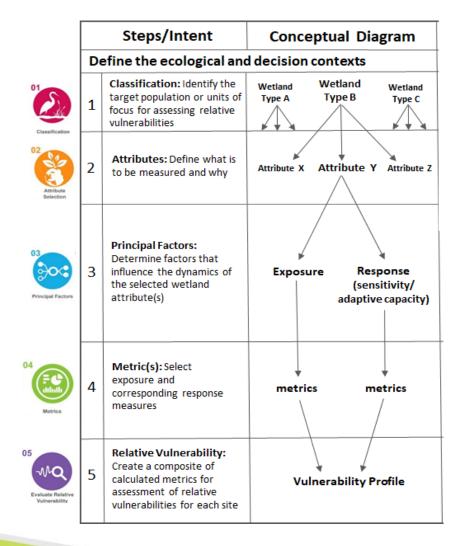
Anna Hamilton, Tetra Tech, Inc.

Jen Stamp, Tetra Tech, Inc.

LeeAnn Haaf, Partnership for the Delaware Estuary

Jordan West, U.S. EPA Office of Research and Development*

*The views expressed in this presentation are those of the authors and do not necessarily represent views or policies of the U.S. Environmental Protection Agency.

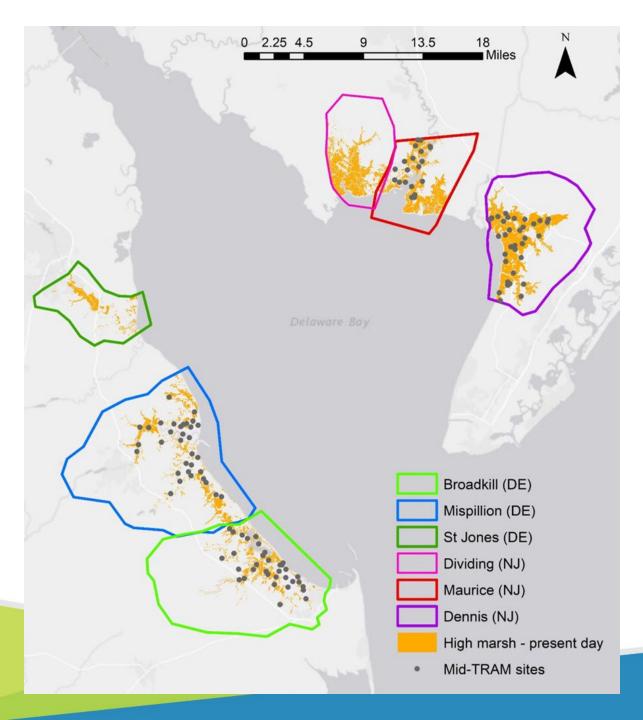

Overview

Goal: Support practitioners in integrating information from climate change vulnerability assessments into their decision making

Approach

- Carry out a climate change vulnerability assessment in the lower Delaware Bay, in collaboration with the Partnership for the Delaware Estuary (PDE)
- Characterize vulnerabilities of different marsh zones to sea level rise and storm surge, with consideration of how resilience response may be mediated by marsh condition
- Demonstrate a framework for using data that are widely available for coastal wetlands in the U.S. and straightforward to interpret

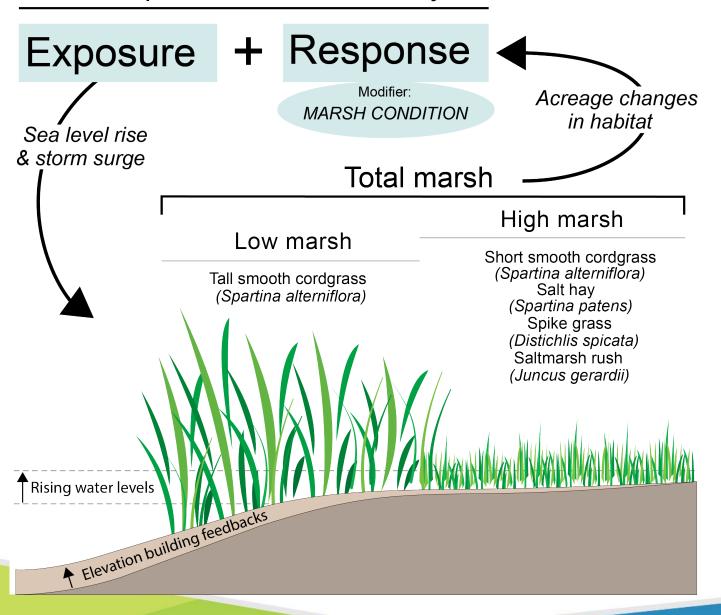
Relative Wetland Vulnerability Framework



First used in freshwater wetlands in Pennsylvania (Wardrop et al. 2019)

Five steps (classification, attributes, principal factors, metrics, relative vulnerability)

Why use the RWVF?


- A systematic process that ensures:
 - ✓ Identification of objectives based on the **decision context** up front
 - ✓ Separate evaluation of **exposure** and **response** components
 - ✓ Selection of **metrics** for what you are measuring and why, that allow clear links to **management objectives**
 - ✓ Flexibility with regard to input data, spatial and temporal scales

Study area

- Six sites (3 in DE, 3 in NJ) with preexisting boundary delineations based on ongoing studies and management activities of PDE and other partners
- Landscape scale → bay-wide comparisons (across sites)
 - site selection
- Also within-site comparisons

Components of Vulnerability

Considered multiple components of vulnerability in combination

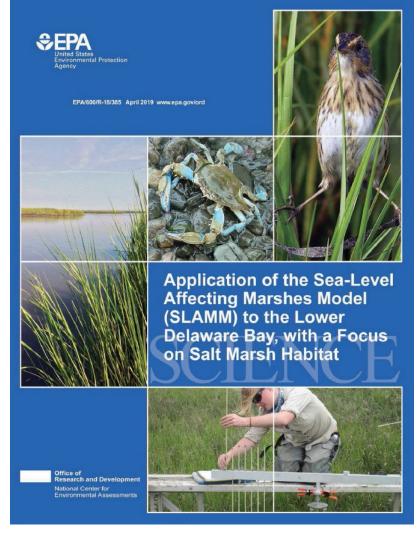
Exposures

- Sea level rise (SLR)
- Storm surge

Response

Marsh acreage

Response modifier

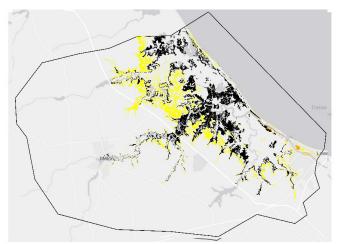

Marsh condition

RWVF populated for our case study

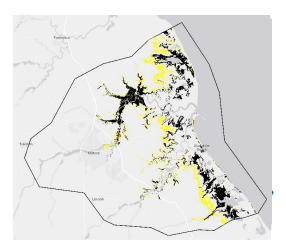
		Steps/Intent	Conceptual Diagram				
	De	efine the ecological and	l decision contexts	Objective: conservation of valued marsh habitats			
Classification	1	Classification: Identify the target population or units of focus for assessing relative vulnerabilities	Wetland Wetland Type A Type B Type C	Six lower Delaware Bay salt marsh areas, divided into zones classified by inundation regime into high, low, & total marsh			
	2	Attributes: Define what is to be measured and why	Attribute X Attribute Y Attribute Z	Acreage of high marsh, low marsh, total marsh			
03 Principal Factors	3	Principal Factors: Determine factors that influence the dynamics of the selected wetland attribute(s)	Exposure Response (sensitivity/adaptive capacity)	Exposure: Relative SLR based on historic global trends, future global mean SLR projections and vertical land movement (VLM) Response: Acreage change Exposure: Storm surge magnitude and extent Response modifier: Marsh condition as modifier of change in marsh acreage			
04	4	Metric(s): Select exposure and corresponding response measures	metrics metrics	Exposure: Historic SLR trend + VLM + Future global mean sea level Response: Percent and areal acreage change by 2050 Exposure: Weighted average inundation depth from Category 3 storms Response modifier: Overall condition score based on Mid-TRAM condition metrics			
05 Evaluate Relative Vulnerability	5	Relative Vulnerability: Create a composite of calculated metrics for assessment of relative vulnerabilities for each site	Vulnerability Profile	Site rankings where greater acreage losses to SLR = greater vulnerability Sites with higher predicted inundation depths are considered to have greater vulnerability Sites with higher-rated condition metrics are considered to have less vulnerability Combined visualization: Juxtaposition of SLR, storm surge and condition metrics to create a single			
				combined expression of relative vulnerabilities			

Sea Level Affecting Marshes Model (SLAMM)

- Used to derive SLR (exposure) and marsh acreage change (response)
- Widely applied in many coastal areas (by USEPA, NWF, USGS, and USFWS, among others)
- Metrics derived for:
 - ✓ SLR projections for intermediate scenario (1.0 m rise by 2100) (Sweet et al. 2017) by 2050
 - √ "Protect developed dry land" scenario
 - ✓ Marsh acreage change
- New twists
 - ✓ Maps that feature high, low and total marsh (rather than all land cover categories shown together)
 - ✓ Results customized for the six marsh areas
 - ✓ Used site-specific accretion data



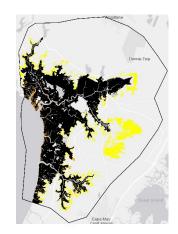
https://cfpub.epa.gov/ncea/global/recordisplay.cfm?deid=344746


Simulation Results - High Marsh Changes

2100

Delaware Subsites

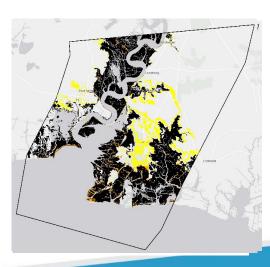
Broadkill Subsite



Mispillion Subsite

Lower St. Jones Subsite

- HM at Time Zero
- Loss of HM
- Gain of HM


New Jersey subsites

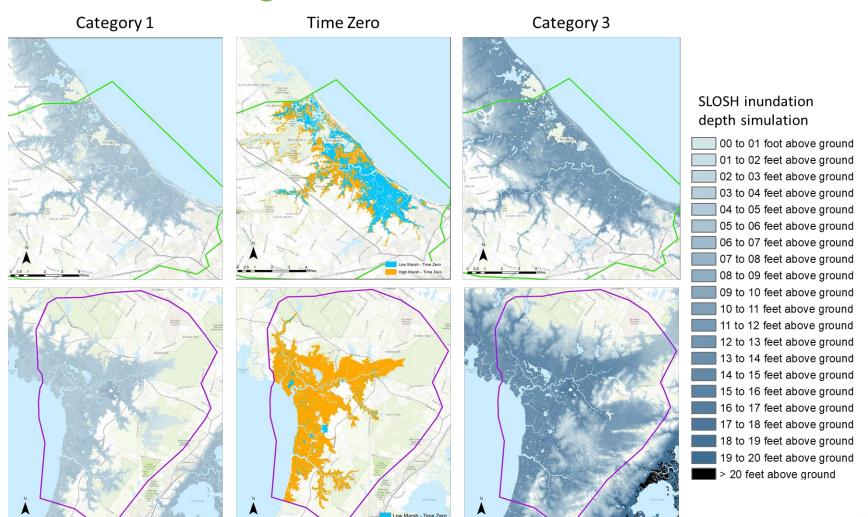
Dennis Subsite

Dividing Subsite

Lower Maurice Subsite

Results quite different - High vs. Low vs. Total Marsh

		SLR trend GM + VLM by 2	Future GMSL by 2050 (m)	High marsh			Low marsh			Total marsh		
Site	State			Time zero (acres)	2050 (acres)	% Change	Time zero (acres)	2050 (acres)	% Change	Time zero (acres)	2050 (acres)	% Change
Broadkill				3240	2522	-22%	3956	5907	49%	7196	8429	17%
Mispillion	DE	3.4		4262	4153	-3%	7166	9189	28%	11428	13341	17%
Lower St. Jones			0.34	1519	1563	3%	1865	2102	13%	3384	3665	8%
Dennis			0.34	9153	9207	1%	422	939	123%	9574	10146	6%
Dividing	NJ	3.8		5027	3821	-24%	1708	3122	83%	6734	6942	3%
Lower Maurice				5225	4927	-6%	1300	1900	46%	6525	6827	5%


Storm surge

Broadkill (DE)

Exposure metrics derived from:

- SLOSH (Cat 3 storm surge inundation depth)
- Historic hurricane strikes

Dennis (NJ)

Hurricane Strikes

Site	Number of hurricane strikes (2000-2018)								
Site	Category 1	Category 2	Category 3	Category 4	All				
Broadkill (DE)	6	2	1	0	9				
Mispillion (DE)	6	2	1	0	9				
St Jones (DE)	3	3	0	0	6				
Dennis (NJ)	4	3	1	0	8				
Dividing (NJ)	3	3	0	0	6				
Maurice (NJ)	4	3	1	0	8				

Marsh Condition ('response modifier')

Derived using selected Mid-Atlantic Tidal Rapid Assessment Method metrics

Site	# Survey locations	Buffer	Hydrology		Soils	Vegetation		Overall
		250m Landscape Condition (B4)	Ditching & Draining (H1)	Wetland Diking/ Tidal Restriction (H3)	Soil Bearing Capacity (HAB1)	Horizontal Vegetative Obstruction (HAB2)	Number of Plant Layers (HAB3)	Mean
Broadkill (DE)	35	7.2 (3-9)	8.2 (3-12)	9.5 (3-12)	8.5 (3-12)	7.2 (3-12)	9 (6-12)	8.3
Mispillion (DE)	34	7.0 (3-12)	8.4 (3-12)	9 (9-9)	7.7 (3-12)	6.2 (3-12)	8 (3-9)	7.7
Dennis (NJ)	35	8.7 (6-12)	10.5 (3-12)	11.7 (9-12)	5.6 (3-9)	7.3 (3-12)	9.1 (9-12)	8.8
Maurice (NJ)	20	7.4 (3-12)	11.9 (3-12)	9.3 (3-12)	7.7 (3-12)	11 (9-12)	8.9 (6-12)	9.3

Putting it all together...

Results differed across marsh sites

	High marsh acreage (time zero)	SLR	Storm	Marsh Condition	
Site		% Change in high marsh acreage by 2050	Hurricane strikes (1900-2018)	Category 3 inundation depth (ft) ^a	Mid-TRAM mean score
Broadkill (DE)	3239.7	-22.2 %	9	11.7	8.3
Mispillion (DE)	4261.6	-2.6 %	9	12.3	7.7
St. Jones (DE)	1518.8	2.9 %	6	12.8	NA
Dennis (NJ)	9152.5	0.6 %	8	14.3	8.8
Dividing (NJ)	5026.6	-24.0 %	6	15.0	NA
Maurice (NJ)	5225.4	-5.7 %	8	14.4	9.3

Conclusions

- Results are quite different for high, low, and total marsh
- Different marsh areas support different ecosystem services, e.g.,
 provision of habitat for valued species or provision of flood protection
- Thus, the concept of vulnerability depends on the management target of interest → and having management objectives in mind from the start
- Management objectives for different or multiple targets/services could lead to conflicts/trade-offs among management interventions
- How can such relative vulnerability assessment results be applied to help inform management decisions?

