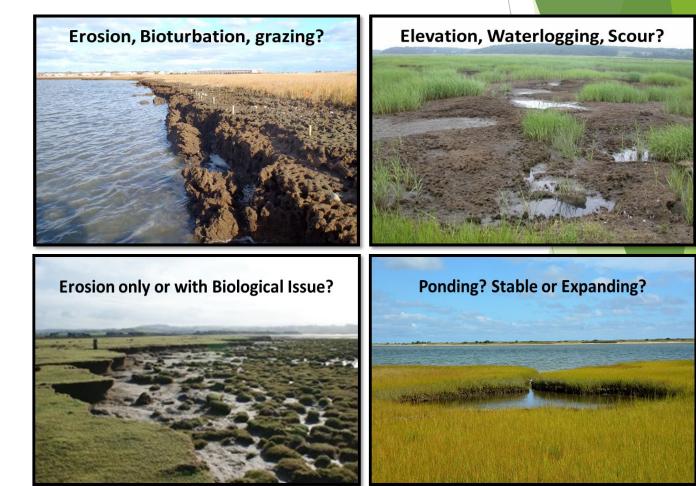


A crosswalk of PDE and EPA tools for wetland assessment

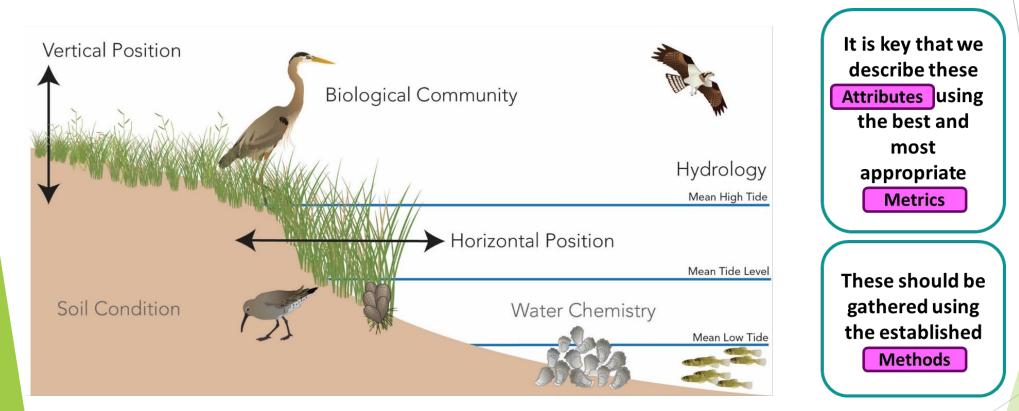
LeeAnn Haaf, Partnership for the Delaware Estuary (PDE)

Jen Stamp, Tetra Tech, Inc. Anna Hamilton, Tetra Tech, Inc. Josh Moody, Partnership for the Delaware Estuary Jordan West, U.S. EPA Office of Research and Development*

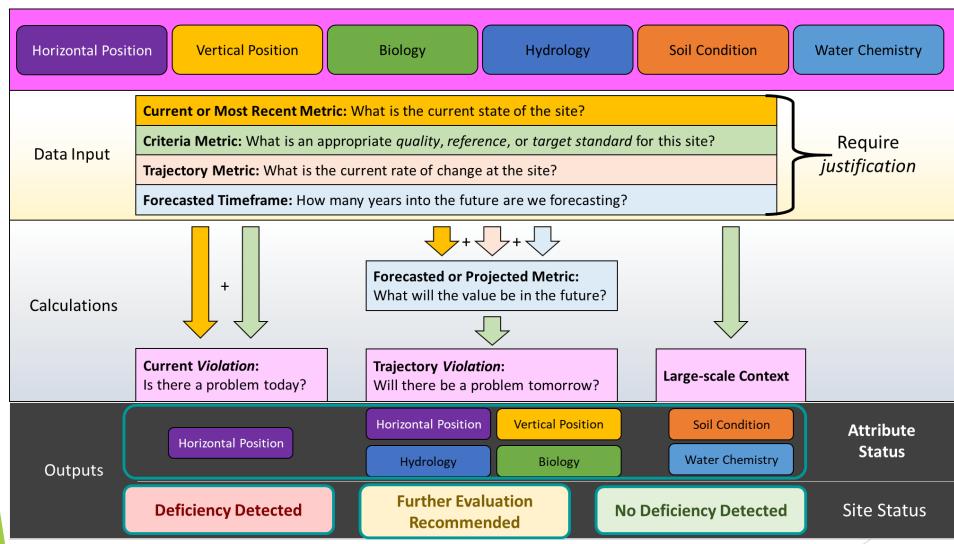
Office of Research and Development Center for Public Health and Environmental Assessment *The views expressed in this presentation are those of the authors and do not necessarily represent views or policies of the U.S. Environmental Protection Agency.


Overview

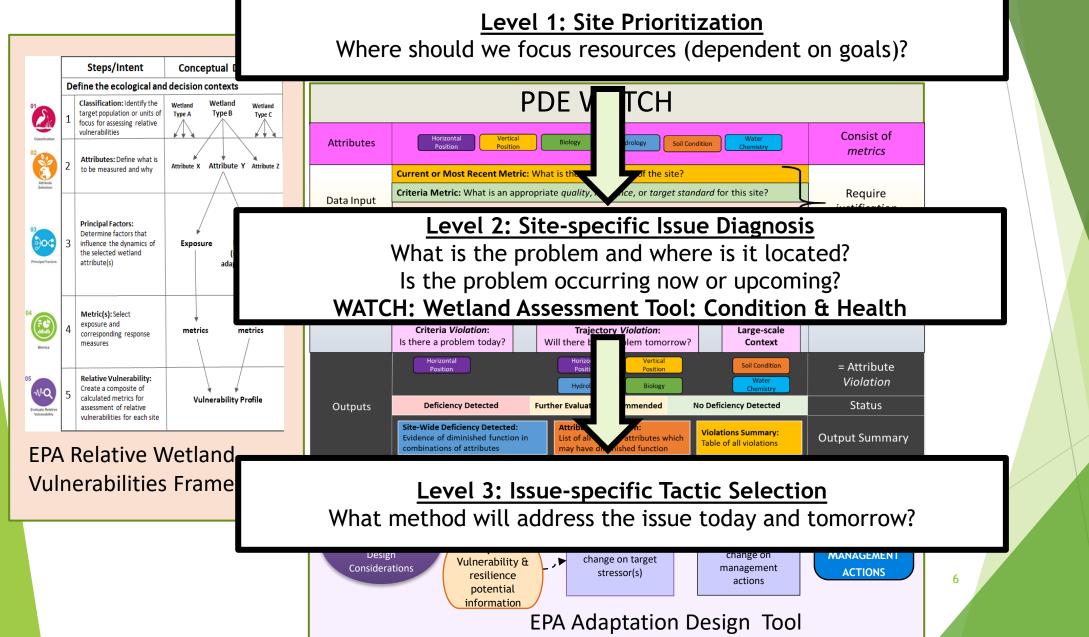
This talk will explore:


- PDE's Wetland Assessment Tool: Condition and Health
- Complementary EPA tools to use in concert
 - Example 1: Relative Wetland Vulnerabilities Framework
 - Example 2: Adaptation Design Tool
- A crosswalk of terminology, attributes, metrics and steps between two of the tools
- Conclusions

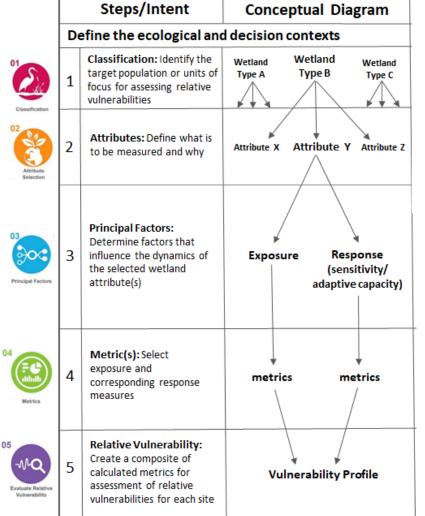
PDE Wetlands Assessment Tool: Condition and Health (WATCH)



WATCH assumptions

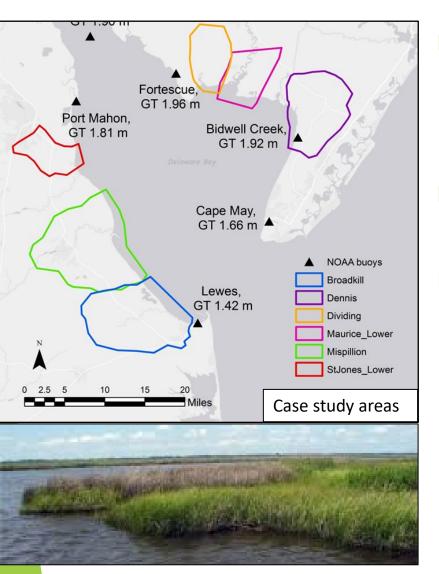


4

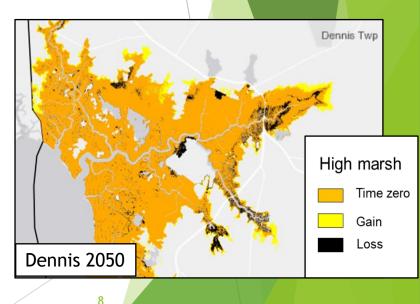

WATCH flow

Using multiple tools in concert

Example 1: EPA Relative Wetland Vulnerabilities Framework (RWVF)

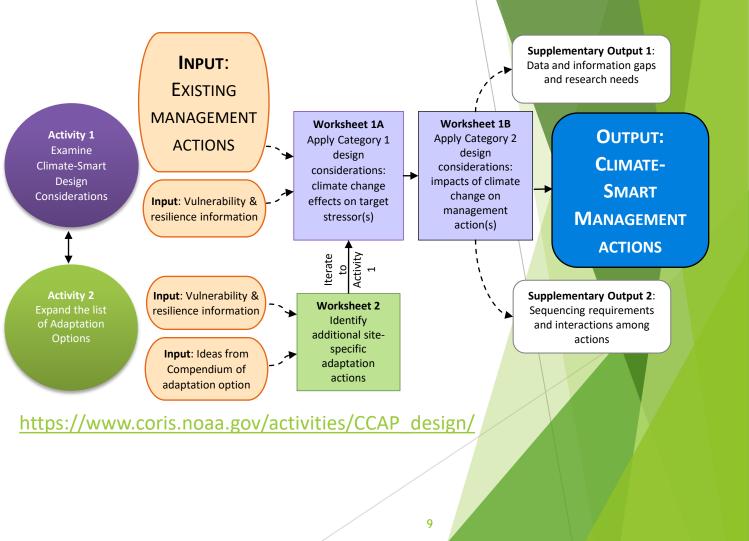


A framework and methodology that:


- Addresses larger-scale site selection
- A **top-down** approach that we seek to align with WATCH's **bottom-up** orientation
- Separately examines **exposure** and **response** components of vulnerability
- Generates vulnerability profiles that can be linked to evaluation of **management tactics** to support **adaptation**

https://doi.org/10.1002/ecs2.2561

Example 1: How the RWVF can work in conjunction with WATCH

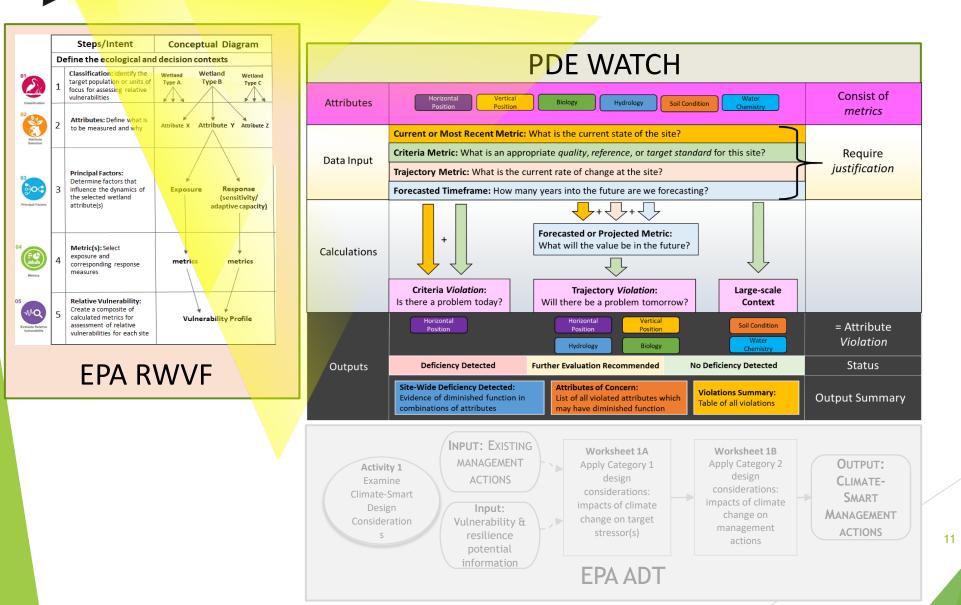

- Used the RWVF to perform a relative vulnerability assessment with components of:
 - **Exposure**: Relative Sea Level Rise (SLR)
 - **Response**: Change in marsh acreage (SLAMM)
- Results can help identify areas that are potentially suitable for management activities **both now and in the future**
- With WATCH, could aid:
 - **Prioritization** of sites for WATCH application
 - **Comparison** of vulnerabilities of multiple WATCH sites
 - Consideration of within-site factors that could affect WATCH criteria standards and trajectories

Example 2: EPA Adaptation Design Tool (ADT)

A structured approach that guides users through a series of steps to:

- Apply climate-smart design considerations to management tactics
- Brainstorm additional adaptation activities that may be critically needed
- Identify and record insights on:
 - Information gaps & research needs
 - Synergies, conflicts & sequencing considerations among actions

Example 2: How the ADT can work in conjunction with WATCH


- For management tactics under consideration, worksheets guide a systematic process of climate-smart design
- **Design Considerations:**
 - Category 1: How will climate change directly or indirectly affect how the stressor(s) of concern impact the system?
 - Category 2: What are the **implications for functionality** of the management action, and how will it need to be adjusted (in terms of location, timing or structural design)?
- Can support **evaluation** of which tactics have the potential for greatest effectiveness in the face of ongoing environmental changes

Worksheet 18

Category 2 design considerations: CC effects on strassage(s) ent actions (watershed example)

B1	B2	B3	B4	B5	B6	B7	B8
Action number	Existing Manage ment Action	Changes in effectiveness of action due to: climate impacts on target stressors	Changes in effectiveness of action due to: climate impacts on management action	Timeframe or constraint for using the action and implementation (e.g., urgency, longer or shorter term)	Notes	What changes are needed to adapt the action (place, time, design)	Climate- Smart Manageme nt Action
1	Install terraces adjacent to dirt roads	Heavy rainfall events following dry periods may overwhelm capacity of terraces	Terraces themselves could be destroyed by extreme events	Life of these practices is 5-10 yrs; need to plan ahead for strategic placement in combination with other actions	How heavy a rainfall event will destroy a standard terrace?	Need to adapt action spatially, design terraces to withstand extreme events	Install and maintain a series of terraces of sufficient capacity, resistant to extreme events and adjacent to roads prioritized as having worst erosion

Spotlight: A closer crosswalk of RWVF and WATCH

Crosswalk: WATCH and RWVF

Common themes

- Both take the user through a systematic process
- Both are very flexible

Differences –

WATCH tool is bottom up

The goal is a comprehensive assessment of the problem(s) at the site

A site has already been selected for evaluation

Spatial scale – smaller, suitable for application of management tactics

Has a SLR component, but not explicitly geared toward climate change

Differences in terminology

RWVF is top down

The goal is a vulnerability assessment to help incorporate climate change considerations into management decision making

Spatial scale – larger, more suitable for informing site selection across larger areas, but results could potentially be used when considering selection and design of intervention tactics within sites

Pilot studies have been geared toward climate change, but the method is flexible to accommodate broader consideration of conventional stressors

Differences in terminology

Crosswalk: RWVF and WATCH

RWVF Steps	WATCH - Road Flooding Example						
Classification/Scenario description	Salt marsh						
Attributes/Scenario description	Salt marsh acreage (or maybe just width), which provides flood protection services for the road						
Principal Factors/ Attributes	Responses (dep Change in r Change in r Change in p Change in p Change in p	pends on the WA marsh width marsh platform e percent vegetatic percent open wa pNitrogen or pNit	TCH attribute): levation on cover ter within marsh	ologic alteration, nutrient enrichment) narsh condition			
Metrics/ Metric or Method, pending the Attribute	Horizontal position Vertical position Biology Hydrology Water chemistry Soil condition	Exposure Not sure SLR, plus other? Not sure Not sure Not sure Not applicable	Response Marsh width (m) Marsh platform elevation (m MLW) Vegetation cover (%) Open Water within Marsh (%) pNitrogen or pNitrate (no data entered) Not applicable?				
Relative Vulnerability/Relative violation seriousness	Could run multi	ple individual site	es through the WATCH tool and	compare results			

Conclusions

- Site assessment and diagnosis of interacting stressors and negative system responses is an essential first step for restoration planning and design
- All three tools support:
 - Evaluation and planning for today, but also for future conditions
 - A systematic but flexible process with management-relevant outputs
- Complementary tools can be used at the level of large-scale site selection, withinsite condition assessment, and tactic-specific climate-smart design
- May or may not need to delve into every tool deeply, but at a minimum can consider key concepts and address the critical ones to your case
- Given all the many tools and approaches out there, how can we better contextualize how they complement or align with each other so we can pick the best ones to use in each situation?